Medium Modifications of Charm and Charmonium in Heavy-Ion Collisions

L. Grandchamp¹, R. Rapp², G.E. Brown³,

¹Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 ²Cyclotron Institute and Department of Physics, Texas A&M University, College Station, Texas 77843 ³Department of Physics, Stony Brook University, Stony Brook, New York 11794

Heavy-flavor bound states constitute a valuable probe of the hot/dense strongly interacting matter formed in relativistic collisions of heavy nuclei. E.g., due to color Debye screening, J/ψ suppression was suggested as a signature of a deconfined medium since tightly bound $c\overline{c}$ states are presumably robust in a hadron gas (HG). However, more recently it has been realized that c-quark reinteractions in the medium can lead to regeneration of charmonium states through c- \overline{c} coalescence, especially if charm production is abundant (e.g., $N_{c\overline{c}} \sim 10$ -20 in central Au-Au collisions at RHIC).

Further insights into charm(onium) properties at finite temperature T have recently been provided by lattice QCD (LQCD) calculations which indicate (i) a continuous reduction of the open-charm threshold with increasing matter temperature and (ii) the survival of low-lying charmonia $(\eta_c, J/\psi)$ up to $\sim 2 T_c$.

We here present an approach to charmonium production at SPS and RHIC [1, 2] in which in-medium charm properties are modeled in accord with LQCD results and implemented into a kinetic rate equation, solved for a schematic thermal fireball expansion. It enables a simultaneous treatment of charmonium dissociation and regeneration throughout the evolution of the system.

At SPS energies (\sqrt{s} =17.3 AGeV), primordial charmonium production is large compared to charmonium equilibrium abundances implying little regeneration. The centrality dependence of the J/ψ over Drell-Yan ratio in Pb-Pb collisions is well reproduced and QGP formation is characterized by J/ψ suppression. The consequences of in-medium effects are particularly pronounced in the ψ'/ψ ratio, cf. the upper panel of Fig. 1. With vacuum D-meson masses (dashed line) our calculation underestimates ψ' suppression. The calculation including medium effects (full line) improves the agreement with NA50 data substantially, which is a direct consequence of the reduction of the $D\bar{D}$ threshold in the HG, opening the $\psi' \to D\bar{D}$ decay channel. The ψ' data set (including p-A collisions) has been reanalyzed by NA50 (diamonds), deducing a stronger nuclear absorption of the ψ' . Our calculation with the correspondingly updated values of σ_{nuc} is shown by the dash-dotted line, confirming the need for in-medium effects to reproduce the ψ'/ψ ratio.

Our calculations at full RHIC energy ($\sqrt{s} = 200$ AGeV) are compared to published PHENIX data in the lower panel of Fig. 1. Contrary to SPS, the J/ψ yield in central Au-Au collisions (full curve) is dominated by regenerated J/ψ 's (dash-dotted curve) while primordial J/ψ 's are almost completely suppressed (dashed line). The uncertainty linked to

our treatment of in-medium effects is reflected by the band corresponding to $-250 < \Delta m_D(T_c) < -80$ MeV, with stronger in-medium effects resulting in a smaller J/Ψ yield.

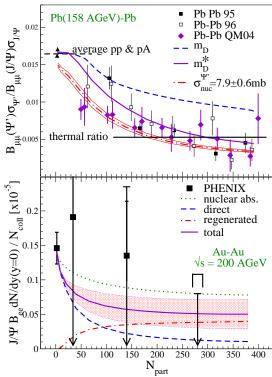


FIG. 1: Upper panel: ψ'/ψ ratio as a function of centrality at SPS Pb(158 AGeV)-Pb collisions. Lower Panel: Centrality dependence of $J/\psi/N_{\text{coll}}$ at mid-rapidity vs. N_{part} in 200 AGeV Au-Au at RHIC.

We find that QGP formation manifests itself by J/ψ suppression at SPS energies and by J/ψ regeneration at RHIC, where run-4 data are expected to give important insights. Inmedium effects have so far proved to be essential to understand the centrality dependence of the ψ'/ψ ratio at SPS. Complementary studies of charmonium transverse momentum distributions, as well as charmonium and bottomonium production at LHC, will provide further scrutiny of the proposed approach.

^[1] L. Grandchamp, R. Rapp, and G. E. Brown (2004), to appear in Phys. Rev. Lett.

^[2] L. Grandchamp, R. Rapp, and G. E. Brown (2004), to appear in J. Phys. G.